On essential spectra of singular linear Hamiltonian systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular constrained linear systems

In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...

متن کامل

singular constrained linear systems

in the linear system ax = b the points x are sometimes constrained to lie in a given subspace s of column space of a. drazin inverse for any singular or nonsingular matrix, exist and is unique. in this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of drazin inverse in solving such systems is investigated. constrained linear system arise ...

متن کامل

Stability of essential spectra of bounded linear operators

In this paper‎, ‎we show the stability of Gustafson‎, ‎Weidmann‎, ‎Kato‎, ‎Wolf‎, ‎Schechter and Browder essential spectrum of bounded linear operators on Banach spaces which remain invariant under additive perturbations‎ ‎belonging to a broad classes of operators $U$ such $gamma(U^m)

متن کامل

Singular Sturmian theory for linear Hamiltonian differential systems

We establish a Sturmian type theorem comparing the number of focal points of any conjoined basis of a nonoscillatory linear Hamiltonian differential system with the number of focal points of the principal solution. We also present various extensions of this statement.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2015

ISSN: 0024-3795

DOI: 10.1016/j.laa.2014.11.030